Optical characterization of CdSe colloidal quantum dot/ MEH-PPV polymer nanocomposites spin-cast on GaAs substrates

TitleOptical characterization of CdSe colloidal quantum dot/ MEH-PPV polymer nanocomposites spin-cast on GaAs substrates
Publication TypeJournal Article
Year of Publication2006
AuthorsAD Stiff-Roberts, A Gupta, and Z Zhao
JournalMaterials Research Society Symposium Proceedings
Volume939
Start Page8
Pagination8 - 13
Date Published12/2006
Abstract

The motivation and distinct approach for this work is the use of intraband transitions within colloidal quantum dots for the detection of mid- (3-5 μm) and/or long-wave (8-14 μm) infrared light. The CdSe colloidal quantum dot/MEH-PPV conducting polymer nanocomposite material is well-suited for this application due to the ∼1.5 eV difference between the corresponding electron affinities. Therefore, CdSe colloidal quantum dots embedded in MEH-PPV should provide electron quantum confinement such that intraband transitions can occur in the conduction band. Further, it is desirable to deposit these nanocomposites on semiconductor substrates to enable charge transfer of photogenerated electron-hole pairs from the substrate to the nanocomposite. In this way, optoelectronic devices analogous to those achieved using Stranski-Krastanow quantum dots grown by epitaxy can be realized. To date, there have been relatively few investigations of colloidal quantum dot nanocomposites deposited on GaAs substrates. However, it is crucial to develop a better understanding of the optical properties of these hybrid material systems if such heterostructures are to be used for optoelectronic devices, such as infrared photodetectors. By depositing the nanocomposites on GaAs substrates featuring different doping characteristics and measuring the corresponding Fourier transform infrared absorbance, the feasibility of these intraband transitions is demonstrated at room temperature. © 2006 Materials Research Society.

Short TitleMaterials Research Society Symposium Proceedings